

Abstracts

Field Theory Analysis of Distributed Microwave Effects in High Speed Semiconductor Lasers and Their Interconnection with Passive Microwave Transmission Lines

R. Vahldieck, S. Chen, H. Jin and P. Russer. "Field Theory Analysis of Distributed Microwave Effects in High Speed Semiconductor Lasers and Their Interconnection with Passive Microwave Transmission Lines." 1995 MTT-S International Microwave Symposium Digest 95.2 (1995 Vol. II [MWSYM]): 861-864.

This paper present a rigorous field theory analysis of the distributed microwave effects in high speed semiconductor lasers by using a combination of a self-consistent complex finite difference method with the frequency-domain TLM method (FDTLM). The semiconductor laser is treated as a lossy multilayer slow-wave microstrip transmission line. The conductivity profile in the active layer is obtained by a self-consistent solution of the nonlinear semiconductor device equations. The attenuation factor, phase velocity and characteristics impedance of the semiconductor laser is presented for the unbiased and forward-biased case and compared with experimental results. On the basis of this analysis we present the interconnection effects between passive microwave transmission lines and laser diodes using airbridge or flip-chip transitions.

[Return to main document.](#)